BISPHOSPHONATES: OPTIMISING OSTEOPOROSIS PROTECTION

Best practice from the 2018 National Osteoporosis Foundation of South Africa (NOFSA) Congress

Introduction

Osteoporosis is a disorder that damages skeletal architecture and weakens the skeleton. A combination of low bone mass and damaged microarchitecture increases the risk of osteoporotic fragility fractures (most importantly of the hip and spine), resulting in substantial morbidity, mortality and societal cost. Objectives of osteoporosis therapies in postmenopausal and older women are to improve bone strength, thereby reducing risk of fracture and, less commonly, to prevent rapid bone loss. Osteoporosis therapies take advantage of, and modulate, the bone remodelling cycle. Anti-remodelling drugs (anti-resorptive agents) that reduce bone remodelling include oestrogen receptor modulators, bisphosphonates (BPs) and denosumab. Remodelling stimulators (anabolic agents), the parathyroid hormone analogues, can be used for a short time to induce new bone formation.1,2

BPs are the agents most extensively studied and prescribed in clinical practice for more than 20 years. BPs provide effective protection from fractures (vertebral 40-70%, hip 40-60%, non-vertebral 20-40%), are generally well tolerated and have a favourable safety profile.2 The recently revised National Osteoporosis Foundation of South Africa (NOFSA) 2017 guideline for the diagnosis and management of osteoporosis recommends the use of a bisphosphonate or denosumab (not routinely available in South Africa) as first-line therapy in DXA-confirmed osteoporosis (T-score ≤-2.5).3 The 17th NOFSA Congress (16-18 March 2018, Cape Town) hosted Dr Michael McClung (USA), who shared his clinical experience in the use of BPs for the treatment of osteoporosis.

KEY MESSAGES

- The revised NOFSA 2017 guideline recommends the use of a BP or denosumab as first-line therapy in DXA-confirmed osteoporosis
- BPs used in South Africa are risedronate, alendronate, ibandronate and zoledronic acid
- Binding affinity for the bone mineral matrix varies between BPs, as does potency in inhibiting the farnesyl pyrophosphate synthase (FPPS) enzyme
- The ‘off effect’ of BP withdrawal on bone remodelling varies between agents
- Oral BPs are poorly absorbed (<1%) into the circulation and are rapidly excreted through the kidney
- There are no head-to-head studies evaluating fracture risk reduction between BPs
- Upper gastrointestinal intolerance is associated with oral BP therapy
- Persistence on oral BP therapy is improved with less frequent dosing.
Bisphosphonates: optimising osteoporosis protection

Mechanism of action of BPs

The mechanism of action by which BPs inhibit osteoclastic activity is reliant on binding affinity and intracellular enzyme inhibition. Once on the surface of the bone, BPs are preferentially deposited at sites of active bone remodelling where they bind to the matrix of the resorption pit and are absorbed by active osteoclasts. Binding affinity varies between BPs; agents with high affinity bind more tightly and persist in the skeleton for a longer time. Intracellularly, BPs inhibit the FPPS enzyme in the HMG-CoA reductase pathway, interfering with osteoclast activity. All BPs used in clinical practice are nitrogen-containing, as this substantially increases reduction of osteoclastic resorption. Alendronate and ibandronate are simpler molecules with a straight N-containing side-chain; whereas risedronate and zoledronic acid have a cyclic side-chain stabilising the position of the nitrogen molecule, imparting a greater potency in osteoclast inhibition (Table 1).4

Table 1. A classification of the bisphosphonates based on mechanism of action4

<table>
<thead>
<tr>
<th>Structure</th>
<th>‘Simple’ non-N BPs</th>
<th>Alkyl-amino BPs</th>
<th>Heterocyclic N BPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Act via ATP-BP metabolites</td>
<td>Inhibition of FPPS</td>
<td>Inhibition of FPPS</td>
</tr>
<tr>
<td>Inhibition of osteoclast resorption</td>
<td>Low potency</td>
<td>Intermediate potency</td>
<td>High potency</td>
</tr>
<tr>
<td>Molecules</td>
<td>Etidronate</td>
<td>Pamidronate</td>
<td>Risedronate</td>
</tr>
<tr>
<td></td>
<td>Clodronate</td>
<td>Alendronate</td>
<td>Zoledronic acid</td>
</tr>
<tr>
<td></td>
<td>Tiludronate</td>
<td>Ibandronate</td>
<td></td>
</tr>
</tbody>
</table>

Pharmacokinetics of BPs

Oral BPs are poorly absorbed from the gastrointestinal (GI) tract into circulation (<1%) even under ideal conditions (empty stomach with a large glass of tap water 30 minutes before other medications, food or drink). Within 24 hours of the dose, about half of the absorbed dose is redistributed to the bone and the remainder is quickly excreted through the kidney, with very little exposure to tissue other than the skeleton and no active metabolites in circulation.5

In terms of duration of attachment to the skeleton, risedronate binds less tightly to hydroxyapatite than ibandronate, alendronate or zoledronic acid (Figure 1).6 Variation in binding affinity is also reflected in total cumulative urinary excretion over time: 70% of alendronate is lost over two years, whereas 85% of risedronate is excreted within only 28 days.5,7-10 In terms of in vitro FPPS inhibition, zoledronic acid is the most potent, risedronate the second most and alendronate the least potent (Figure 2).11

![Figure 1. BP binding affinity for bone in vitro](image1)

![Figure 2. BP inhibition of FPPS in vitro](image2)
Withdrawal of BPs

Upon withdrawal of BPs, the ‘off’ effect on bone remodelling differs between BPs. Using markers of bone resorption, the VERT-NA Extension study showed that discontinuation after three years of risedronate treatment resulted in the loss of the full effect of bone turnover inhibition within one year. This is in marked contrast to alendronate and especially zoledronic acid. A single-dose IV infusion of zoledronic acid provides substantial inhibition of bone turnover as long as three years. In the Extension of HORIZON PFT, indices of bone remodelling remained well below baseline for three years in patients who had received annual doses of zoledronic acid for three years. This has implications for how long a BP ‘holiday’ should be. A shorter drug holiday is recommended for risedronate than for alendronate or zoledronic acid. Importantly, the VERT-NA Extension study indicated that during the year off risedronate therapy, patients were still protected from vertebral fracture. During three years on risedronate therapy there was a 41% decreased risk of vertebral fracture vs placebo; during the year off therapy, vertebral fracture risk reduction was 47%. This important distinction from denosumab was emphasised by Dr McClung, as rapid loss of vertebral fracture protection occurs within months of discontinuing denosumab therapy.

Clinical consequences of differences among BPs

Each BP has its own ‘pharmacological signature’ of binding affinity and potency. Due to the lack of head-to-head studies documenting fracture risk reduction, it is difficult to determine if these differences translate into important clinical outcomes. There are several possible clinical consequences of these differences:

- Skeletal retention of drug (amount and duration of binding)
- Speed of onset of effect on inhibition of bone remodelling
- Speed of reversal of effect (offset)
- Potency in degree of bone turnover suppression
- Differences in BP uptake in trabecular and cortical bone (drugs that bind very tightly don’t diffuse through to the cortical bone)
- Types of anti-fracture effects (vertebral vs non-vertebral)
- Safety and tolerability.

Fracture risk reduction with BPs

There are no head-to-head studies evaluating fracture risk reduction with BPs. Dr McClung emphasises that one cannot and should not attempt to compare efficacy across studies because patient populations are different and even definitions (e.g. non-vertebral fracture) differ between studies. Alendronate, risedronate and zoledronic acid have been shown to substantially reduce risk of vertebral, hip and other fractures in clinical trial settings of postmenopausal women with osteoporosis. Ibandronate has only been shown to reduce the risk of vertebral fracture. In a large clinical phase III study, there was no significant effect on non-vertebral and hip fracture, although the study design was inadequate for confidence that ibandronate reduces non-vertebral and hip fracture risk (Table 2).

Table 2. BP studies evaluating fracture risk reduction

<table>
<thead>
<tr>
<th></th>
<th>Vertebral</th>
<th>Non-vertebral</th>
<th>Hip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alendronate</td>
<td>48%</td>
<td>26%</td>
<td>53%</td>
</tr>
<tr>
<td>Risedronate</td>
<td>41-65%</td>
<td>39%</td>
<td>40-60%</td>
</tr>
<tr>
<td>Ibandronate</td>
<td>62%</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Zoledronic acid</td>
<td>70%</td>
<td>25%</td>
<td>41%</td>
</tr>
</tbody>
</table>
Fracture risk with risedronate therapy

Long-term fracture risk reduction with risedronate was examined in the VERT-MN trial. Patients were assigned risedronate 5mg once daily or placebo for five years, after which everybody received risedronate for years six and seven. Patients continuing risedronate therapy maintained the same low rate of vertebral fracture during years six and seven, despite growing older and therefore having an increased fracture risk during the treatment period.21

For Dr McClung, ‘the speed with which risedronate reduces non-vertebral fracture risk is very impressive’. Post-hoc analyses of pooled clinical trial data from more than 6000 patients showed a significant reduction in non-vertebral fracture within the first six months of risedronate therapy (59%) compared to alendronate therapy (36%).16,23 The REAL retrospective observational study assessed cohorts of women receiving risedronate (n=12,215) or alendronate (n=21,615) and followed the incidence of hip fracture over one year. Cumulative incidence over time shows fewer patients with hip fracture on risedronate therapy. This is not a randomised trial so a definite conclusion that risedronate is more effective than alendronate for hip fracture reduction cannot be made. However, the authors did attempt to adjust for various contributors of fracture risk (bone density, prior fracture, age, body weight) that could be identified and no explanation for the difference in hip fracture reduction was observed.24

The FACT study randomly assigned treatment-naïve patients to receive clinically approved doses of alendronate 70mg weekly or risedronate 35mg weekly.24 The difference in approved doses is a likely explanation as to why, in this study, risedronate is a less potent inhibitor of bone turnover than is alendronate. Dr McClung hazards the guess that if the same doses of the two agents were used, there would be little difference in the inhibition of bone turnover or trochanter bone mineral density (BMD). He pointed out that the greater BMD increase observed with alendronate in this study does not necessarily translate into greater protection from fractures, for in the Phase III alendronate study, the risk of vertebral fracture was the same in the groups of patients receiving 5 or 10mg once daily, despite greater increases in BMD with the larger dose.25

Risks and concerns

Several adverse events have been associated with BP therapy, especially upper GI intolerance with the oral agents. Remaining in an upright position for 30 minutes after taking an oral BP is advised. Various clinical studies indicate that frequency of upper GI adverse events is no different between oral BP and placebo groups, “…however, there is a very strong perception in the clinical community and in patients that as soon as you take your first dose, the next hiccup that you get is clearly related to the drug.” The background incidence of GI distress among osteoporotic women older than 70 is high.2

Atypical fracture of the femur (AFF) has an incidence of 1/1000 patients after 8-10 years of alendronate and is clearly related to the duration of oral BP therapy. In Australia, where risedronate is the most commonly used BP, the majority of AFF fractures were still observed in patients on alendronate therapy.26 Acute phase reaction with influenza-like symptoms is seemingly exclusively associated with very high IV doses of BP. Concerns about atrial fibrillation with IV dosing are, in the opinion of Dr McClung, not valid or true.2
BISPHOSPHONATES: OPTIMISING OSTEOPOROSIS PROTECTION

Adherence to BP therapy

Persistence on oral BP therapy is suboptimal. Reduced fracture rates are observed only in patients with proper persistence and compliance (adherence >80%) on long-term BP therapy.27,28 Less frequent, more convenient dosing is associated with better adherence to therapy. Surveys have indicated preference for weekly over daily dosing and monthly over weekly dosing of oral BPs.29,30 A preference for three-monthly IV ibandronate and six-monthly denosumab over weekly oral alendronate is evident in the real-world setting.31,32

Risedronate once-a-month dosing

A study to evaluate the efficacy of risedronate 150mg once-a-month vs risedronate 5mg once daily (as per FDA registration requirements) over two years had a primary endpoint of mean change in lumbar spine BMD at 12 months from baseline. Once-a-month risedronate was determined to be non-inferior to the daily regimen in respect of BMD and markers of bone turnover, with similar tolerability to daily dosing.33,34

Conclusion

For Dr McClung, risedronate is the BP of choice for first-line therapy in the treatment of osteoporosis. The high potency of risedronate offers substantial protection from important fractures, with a rapid onset of action and persistent effect. Low binding affinity of risedronate results in a relatively rapid off-effect with faster clearance after stopping, allowing for a short drug holiday while the patient is still protected from fracture. Risedronate is well-tolerated with convenient dosing options.

References

BISPHOSPHONATES: OPTIMISING OSTEOPOROSIS PROTECTION